C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name : Theory of Computation

Subject Code : 4TE06TOC1		Branch: B.Tech (CE)	
Semester : 6	Date: 29/04/2019	Time: 10:30 To 01:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

- a) Find regular expression corresponding to the language of all strings that begins or end with 00 or 11 over {0, 1}*.
- **b**) List out applications of Theory of Computation.
- c) Show that the statement $p \lor q \lor r \lor s$ and $(\neg p \land \neg p \land \neg r) \rightarrow s$ are equivalent.
- d) Differentiate Deterministic Finite Automata with Non-Deterministic Finite Automata.
- e) Number of states requires accepting string ends with 101.

(i) 3 (ii) 2 (iii) 4 (iv) can't be represented

- f) Give definition of Regular Grammar.
- g) State Arden's Theorem.
- **h**) Which of the following is most powerful?
 - (i) Non-Deterministic Finite Automata
 - (ii) Deterministic Finite Automata
 - (iii)Deterministic Pushdown Automata
 - (iv)Non-Deterministic Pushdown Automata
- i) The logic of a pumping lemma is a good example of
 - (i) The pigeon hole principal
 - (ii) Divide and Conquer Method
 - (iii)Iteration
 - (iv)Recursion
- **j**) How many strings of length less than 4 contains the language described by the regular expression (x+y)*y(a+ab)*?
 - (i) 7 (ii) 10 (iii) 12 (iv) 11
- k) Regular expressions are closed under
 (i) Union (i
 - (ii) Intersection (iv) All of the mentioned
- (iii) Kleen star (iv) All of the mentionedI) Given the language L-{ab, aa, baa}, which of the following strings are in
 - L*?
 - 1) abaabaaabaa, 2) aaaabaaaa, 3) baaaaabaaaab, 4) baaaaabaa

(14)

	(i) 1, 2, and 3	(ii) 2, 3, and 4		
	(iii)1, 2, and 4	(iv) 1, 3, and 4		
m)	Describe the language corresponding to given regular expression:			
	(1+01)*(0+01)*			
n)	The number of eight-bit strings beginning with either 111 or 101 is _			
	(i) 64	(ii) 128		
	(iii) 265	(iv) None of the above		

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- (a) What is a finite automaton? For each of the following regular expressions, draw an FA recognizing the corresponding language:
 - i) (111 + 000) * 0
 - ii) $(0+1)^*(01+110)$
 - iii) $0 + 10^* + 01^*0$
- (b) Using Principle of Mathematical Induction, prove that for every $n \ge 1$, 7 + 13 + 19 + . . . + (6n + 1) = n(3n + 4)

Q-3 Attempt all questions

- (a) Draw Finite Automata (FA) for following languages:
 - L1 = {x | 11 is not a substring of x, x ε {0,1}*}
 - L2 = {x | x ends with 10, x $\in \{0,1\}^*$ }

Find FA accepting languages (i) L2 - L1 and (ii) $L1 \cap L2$

(b) For given NFA-[^], draw an NFA and using subset construction method also draw an FA accepting the same language.

Q-4 Attempt all questions

(a) For given FA, find a minimum-state FA recognizing the same language: (04)

(14)

(14)

	(b)	Give definition of context-free grammar. Find context-free grammars generating each of these languages: (i) $\{a^{i}b^{j}c^{k} i = j + k\}$ (ii) $\{a^{i}b^{j}c^{k} i = i \text{ or } i = k\}$			
	(c)	Find regular expression corresponding to given FA.	(03)		
		$ \xrightarrow{a} (1) \xrightarrow{a} (2) \xrightarrow{a} (3) \xrightarrow{b} (4) $	(00)		
Q-5		Attempt all questions			
	(a)	For each of these regular expressions over $\{0, 1\}$, draw an NFA- [^] recognizing the corresponding language. (i) $(0+1)(01)^*(011)^*$ (ii) $(0+1)^*(011+01010)(0+1)^*$	(04)		
	(b)	Using pumping lemma show that the language $L = \{ww w \in \{0, 1\}^*\}$ is not regular.	(03)		
	(c)	Convert a given CFG (Context free grammar) to Chomsky Normal Form (CNF)	(07)		
		$S \rightarrow AACD$ $A \rightarrow aAb \mid ^{\land}$ $C \rightarrow aC \mid a$ $D \rightarrow aDa \mid bDb \mid ^{\land}$			
0-6		Attempt all questions	(14)		
C	(a)	Design and draw a deterministic PDA accepting strings of the language $L = \{ x \in \{ a, b \}^* n_a(x) > n_b(x) \}$. Trace it for the string "aababaab"	~ /		
	(b)	Show that the following CFGs are ambiguous and find an equivalent unambiguous grammar.			
		(i) $S \rightarrow a Sa bSS SSb SbS$ (ii) $S \rightarrow ABA$ $A \rightarrow aA ^{A}$ $B \rightarrow bB ^{A}$			
Q-7		Attempt all questions	(14)		
	(a)	Define Turing Machine. Draw a Turing Machine(TM) to accept Palindromes over {a b} (Even as well as Odd length Palindromes)			
	(b)	 Explain following terms: (i) Basic complexity classes (ii) Equivalence Relation (iii) P and NP Completeness 			
0.0		Attempt all questions	(14)		
Q-8	(a)	Write a short note on (i) Universal Turing Machine	(14)		
	(b)	(ii) Halting Problem Explain unbounded minimalization and μ -recursive functions.			